
pulls

Index:

- Introduction to forces

\square

- Measuring a force ㅁ
- Gravity
o Friction: introduction口
- Friction: Investigation \square
- Friction: How to reduce friction \square
- Balanced and unbalanced forces \square

Name \qquad

Form

FORCES Part 1

A force is any kind of PUSH or PULL (or twist)
If you see something moving there MUST(at some time) have been a force acing on it be a force acting on it.

A force is needed to make an object speed up
or to make it slow down
or to make it change direction
or to make it change shape

Write the word 'Pull' or 'Push' in the box by each diagram

Forces have a direction. The direction of the force is shown by an ARROW

The archer pulls the string in this direction

The string pushes the arrow in this direction

Examples of actions that need a force:

- pushing a toy car to make it move
- squashing some modelling clay
- hitting a cricket ball
- bending a stick

Types of Force

Some forces have special names:

- Magnetism: is the pull or push produced by a magnet.
- Gravity: is the force that gives us weight. Gravity always pulls downwards.
- Friction: is the force that slows things down. Friction makes sliding difficult.
- Upthrust: is the upward force that makes things float .

Mini test

1. A Force is described as a \qquad or a \qquad
2. A force can make an object do four things
a) Go faster (speed up)
b)
c) \qquad
d) \qquad
3. Write down the name of the force that makes it difficult for things to slide: \qquad
4. Write down the name of the force that pulls things downwards: \qquad

Measuring Force

The unit of force is the newton (N).

Forces can be measured using a spring balance

(A spring balance is sometimes called a force meter or Newton meter)

Here are some forces I measured:	
What I did	Force (in Newtons)
The weight of my pencil case is:	
The force needed to slide a pencil case along the bench	

Gravity

Gravity is a force that pulls all objects towards each other. Gravity is a pulling force.
Gravity pulls objects down, towards the centre of the earth Gravity is the force that's gives objects their weight weight

The red arrows show the direction of the gravitational pull.

Sir Isaac Newton

Some gravity facts:

- There IS gravity on the moon... it is 6 times less than the gravity on Earth
- There IS gravity in space.... It is just not easy to notice it
- Gravity keeps the planets in orbit around the sun
- Gravity causes the tides
- Gravity was 'discovered' by a scientist called Sir Isaac Newton

Mini test

1. What instrument is used to measure a force?
2. What is the unit of force?
3. What is the name of the force that gives objects weight? \qquad
4. Is gravity a 'Pulling force' or 'pushing force' ?

FRICTION

Friction is a force that slows things down or tries to stop an object moving
Friction causes grip.
Friction causes heat. The brakes on your bike will bill be hot after they have slowed down the moving wheel.

Without friction your feet would just slip on the ground.
Running shoes need friction to grip the ground
Tyres need friction to grip the road.

Carrying out an investigation

- What are you trying to find out?
- How will you do the experiment?
- What variables will you measure?
- What variables will you keep the same?
- What is your prediction?
- What are your results?

Investigating Friction

Aim: To find out which surfaces have the most grip (friction)

Diagram

Method (what we did)

We placed some weights on a wooden block and pulled it along the bench using a force meter
We wrote down the force needed to make the block move
We repeated the experiment several times with different surfaces between the trolley and the bench top.

Results

Type of surface	Force needed to pull the trolley (N)
Bench top	1 N
Carpet	2 N
Sand paper	3 N
Rollers	1 N
Floor	1 N

Some notes on this experiment
This is what we measured:

To keep make it a fair test we kept these factors the same for each experiment:

The load the person pulling the block

This was my conclusion:

The surface that had the most friction is: \qquad Sandpaper...

I put this answer because: It took the biggest pull
\qquad

How can we reduce friction?

By using bearings

By using lubrication (usually oil)

By having a smooth surface such as skis or ice

By using a streamlined (aerodynamic) shape that air slips over easily

Mini test

1. What is the name of the force that slows things down? \qquad
2. Which type of surface has the most friction (rough or smooth)? \qquad
3. How could you tell if the brakes of a car or bike had been used in the last few minutes? \qquad
4. Describe one way of reducing friction: \qquad
5. A force is best described as a P \qquad or a \qquad
Use lines to join up each description with the force it is describing

Pulls us towards the ground
A force that can pull or push
A force that slows things down

FRICTION
GRAVITY
MAGNETISM
3. Put a tick by the statements below that are correct:

There is no gravity on the moon
Gravity pulls things towards the Earth

Gravity from the Sun stops the Earth flying off into space
4. The picture of the Earth has a boy (A) standing at the North Pole holding a conker on a string and another boy (B) standing at the South Pole.

Draw a conker on a string in the hand of boy B .

A girl is finding out how heavy his pencil case is
He hangs the pencil case from a force meter

$2 N$

5 What does the \mathbf{N} in the diagram stand for?
6. What is the name of the force that pulls the pencil case down?
7. What the weight of the pencil case?

A boy uses the same force meter to pull his trainer across the bench.
He is pulling in the direction of the arrow.
8. What is the name of the force that makes the trainer grip the ground?

The boy pulled 4 different trainers along the bench and measured the amount of force needed to pull each trainer

Here are the results of his experiment

Type of surface	Force needed to pull the trainer
Trainer 1	3 N
Trainer 2	5 N
Trainer 3	2 N
Trainer 4	1 N

9. Which is the biggest force?
10. Which trainer had the most grip ?

Assessment test FORCES (B) (There are three sheets in this test)
2. A force is best described as a \qquad or a \qquad
3. Pick the correct answer from the list of words below the question
a) The force which slows down a moving car is called: \qquad
b) The force which pulls us towards the ground is called: \qquad
c) What instrument do we use to measure force? \qquad
d) What is the unit of force? (how do we measure force)? \qquad

Newtons Friction Gravity Spring Balance

3. Put a tick by the statements below that are correct:

Gravity causes objects to have weight
There is no gravity on the moon
Gravity acts towards the centre of the earth
Gravity gets less as we move away from the Earth
The Moon's gravity causes us to have tides
Gravity keeps the Earth in orbit around the sun
4. The picture of the Earth has a boy (A) standing at the North Pole holding a conker on a string and another boy (B) standing at the South Pole.

Draw a conker on a string in the hand of boy B .

5. A boy is measuring the force needed to pull a brick across the bench

How big is the force (in newtons) needed to pull the brick? \qquad
What is the name of the instrument he is using? \qquad
What could the boy do to make it easier to pull the brick?
\qquad
6. Describe one way that friction is a useful force (how can friction help you)?
\qquad
7. Describe one way that friction is not good (when is friction a nuisance or bad)?

Some children carried out an experiment to see which trainer had the most grip on the bench

Diagram

They pulled the trainer across the bench and measured the force needed to make the trainer move. They repeated the experiment for each of the trainers.

Results

Type of surface	Force needed to pull the trainer
Trainer 1	3 N
Trainer 2	5 N
Trainer 3	2 N
Trainer 4	1 N

8. Complete this sentence:

Conclusion: The trainer that had the most grip was trainer number \qquad
I know this because. \qquad

It probably had a better grip because \qquad

Complete the bar chart for the results

FORCES Part 2

Balanced and Unbalanced forces

Forces usually work in pairs
If the forces are not equal (unbalanced) then an object will speed up or slow down.
If the forces are balanced (equal) then the object will not move (or stay moving at a steady speed)

Add the labels Thrust, Air resistance, Friction or Gravity to box by each arrow

Upthrust

We weighed several objects in air and also in water
For each object we calculated the difference in weight.

Diagram

Object	Weight in air N	Weight in water N	Difference in weight = Upthrust N

Why do you think an object weighs less in water?

Forces 2 assessment test

Name: \qquad

1. Pick the correct answer from the list of words below the question
e) The force which slows down a moving car is called: \qquad
f) The force which pulls us towards the ground is called: \qquad
g) The force that keeps a ball floating on water is called: \qquad
Mass Gravity Heat

Upthrust Friction Temperature
2. The diagram shows a box falling on a parachute. It is falling at a steady speed towards the earth.

There are two forces shown on the diagram using arrows
a) Write down the NAME of each force on the line near the arrow. (Use one of the words below)
Gravity \quad Air resistance \quad Heat Wind \quad Magnetism
3.. The diagram shows a ball floating on water.

4. When some of the air was let out of the ball it became lower in the water and then sank.

Why did it sink? Put a tick by the best answer below:

The ball was heavier
The upthrust on the ball was less
Someone was probably pushing the ball down
5.

A boy is pushing a block across his drive. He is pushing towards the right
a. In which direction will the box move? LEFT or RIGHT (circle the correct answer)
b. There is another force pushing to the left which make the box difficult to move. What is the name of that force? FRICTION or GRAVITY (circle the correct answer)
c. Add another force arrow to show gravity acting on .the block
d. There is one other force on the block (making four all together) In which direction will this fourth force be acting?

